
https://clearvision-cm.com/git

Many of the world’s largest Dev teams have adopted Git and it’s not hard to see why.

• It can handle small and large projects
easily.

• It has a tiny footprint.

• It outclasses other version control tools.

• It’s simple to learn.

Take that last bullet with a pinch of salt…

Git commands to type in your terminal are

highlighted in bold, e.g. git status.

• Git is installed.

• You are using the command line terminal or Git Bash for Windows as your Git client.

Assumptions

GIT Commands

OS commands are also entered on the command

line and are highlighted in red, e.g. cd <directory>.

OS Commands

Git 101 is designed to give you the basics of Git in 15-minutes with the accompaniment

of a cheat sheet.

How to create a new Git repository, make changes to it, and keep track of those

changes.

page 1 - git 101 presented by clearvision

http://git-scm.com/downloads

WhaT ThIs WhITe paper Won’T Tell you

Whilst this white paper will help you get started, we recommend a Git training course

to get to grips with all the features.

Creating
a
new
repository

https://clearvision-cm.com/git/training
https://clearvision-cm.com/git/training

CreaTInG a neW reposITory

When history is added to a Git repository, it's important for audit purposes that Git

knows the author of the changes.

The first thing to do is to tell Git who you are. Git needs this information regularly

(every time you create history in fact). By configuring these settings at the start, a lot

of time is saved later on.

git config --global user.name “myname”

The	author	is	configured	as	a	username	and	an	email	address.

git config --global user.email “myemail”

The global argument applies “myname” to all local Git repositories you use (not by others
who share the system).

In your users ‘home’ directory, type the following commands:

mkdir git_repos - If you do not already have a location for your local Git repositories.

cd git_repos - To move to the newly created directory.

git innit newrepo

This creates a directory called ‘newrepo’ and initialises it as a Git repository. Inside the

new directory is a hidden directory named ‘.git’.

WarnInG

Until you are comfortable with Git, do not modify the contents of the directory, as this is where Git

keeps track of things (that’s why it’s hidden!). In most cases, Git will manage the contents of the directory

for you.

page 3 - git 101 presented by clearvision

makInG ChanGes

Let’s create some content within ‘newrepo’:

cd ~/git_repos/newrepo - Change directory to ‘newrepo’ if you’re not already there.

echo red > red.txt - Create a file called ‘red.txt’ containing the word ‘red’.

git status

The status command shows the status of our working directory and staging area in

comparison to the contents of the repository. At this point, we can see Git is aware of a new

file ‘red.txt’, however, it is not being tracked as of yet.

git add red.txt

The add command takes content from our Working Directory (in this case ‘red.txt’) and adds

it to the Staging Area. This has the side effect of telling Git to ‘track’ changes to the file.

git status

The status has now changed and you can see that Git is tracking ‘red.txt’ (along with a handy

hint to untrack it).

git commit -m ‘added file red.txt’

We have ‘committed’ our new file from the Staging Area to our Local Repository database.

The ‘-m’ option allows us to specify a commit message to identify what it is for. If it is

omitted, the default editor will appear for the message to be entered. All Git commits must

include data on both the author (configured earlier) and a commit message - it cannot be

blank.

git status

Our Working Directory is now clean. That doesn’t mean it is empty, it means that our

Local Repository and our Working Directory are in step.

page 4 - git 101 presented by clearvision

Now, let’s	modify	‘red’txt’	and	create	another	new	file:

git add blue.txt

Git is now tracking ‘blue.txt’, and the changes have been added to the staging area.

git add red.txt

Although Git is already tracking ‘red.txt’, we must add our changes into the staging area to
plan for the next commit before we create new history.

git status

Git shows two changes ready for ‘commit’, one new and one modified file.

git commit -m ‘Modifying red and adding blue’

Git has now committed our changes from the Staging Area to our Local Repository.

echo red >> red.txt - Append a new line containing ‘red’ at the end of file ‘red.txt’.

echo blue > blue.txt - Create the new file ‘blue.txt’ containing the text ‘blue’.

We now have two files in our Working Directory; it's time to ask Git to track the new

file.

Viewing
History

viewing history

git log -5

Git is now showing us our commit history (to the last 5 commits). We can see we have created

two commit points.

Each commit has a 40-character hash which uniquely identifies who did it, when it happened,

and why.

This hash is important as there are no sequential revision numbers in Git, so it provides our

only unique identification method.

sharInG Code WITh oThers

It’s likely when you start working, that you won’t create your own repository but copy
a project that exists elsewhere through the command “git clone”.
In this scenario, Git maintains a link back to the original repository named ‘origin’.
As we started from scratch, we don’t have this link and must create it.

git remote add origin ‘URL/to/repository’

Define the location of ‘origin’ as another repository, reachable via a URL.

git push -u origin --all

Push the contents created to the remote repository configured as ‘origin’ - note, this
assumes we are using the default master branch, or another branch that exists in the
remote repository.

page 6 - git 101 presented by clearvision

You're good to go!
Use the accompanying cheat sheet to remind yourself of the use cases for each of

these commands, and a few more you might find useful as well!

Alternatively, if you are interested in understanding this guide in greater detail,

Clearvision has a range of training courses. Contact us at, sales@clearvision-cm.com.

oTher resourCes

As an open-source platform, Git has almost infinite support available online. We’ve

selected some of the best:

• Git training courses: (Basics, Advanced, and Admin) – Comprehensive courses delivered
virtually or in a classroom.

• Git Consultants -	Configuration and implementation support, plus, health checks and

bespoke assistance.

• Git-sCm – A great resource for downloads and relevant documentation.

Plus:

mailto:sales%40clearvision-cm.com?subject=
https://clearvision-cm.com/git/training
http://git-scm.com/
https://www.clearvision-cm.com/atlassian/atlassian-consultancy/

Infrastructure

references

origin/master
Remote branch tracking the location of the master branch in
the origin repository.

HEAD^ or HEAD~n
An ancestor of the current head where ^ = 1 or
n = any number above 1.

HEAD
Current working position as shown by the contents
of your working directory.
master
Default branch.

origin
Default upstream repository.

CreaTe

git clone <../existing/repo/path> <../new/
repo/path>
Copies the repository at <../existing/repo/path> to <../
new/
repo/path> and records <../existing/repo/path> as the origin.

git innit <path>
Turns the directory at <path> into a Git repository,
even if not empty. If <path> does not exist, this
command will create it.

ChanGe

git add < ile>
Stages a change to be included in the next commit.

git add * or git add .
Stages all changes.

git add -u .
Stages all local modifications from the current
directory - does not work on new (untracked) files.

git add -u :/
Stages all local modifications from the repository
root, does not work on new (untracked) files.

git add -A
Stages all local modifications.

git commit
Converts staged changes into binary objects and
puts a new commit at the top of the current branch.

git commit -m <message>
Converts staged changes into binary objects and puts a
new commit at the top of current branch with comment
<message>.
git commit -a
Stages all local modifications and commits (does not work
on new files).
git commit < ile(s)>
Creates a new commit ignoring all changes other than
<file(s)>.

git rm < ile>
Deletes <file> and stages the change.

git mv < ile> <new ile>
Move or rename <file> to <newfile>.

git stash save/apply
Save or re-apply local modifications to / from a stash.

fixing errors

git revert <SHA-1>
Revert the delta of <SHA-1> creating a new commit at the top
of the current branch.
git checkout <SHA-1> < ile>
Recover <file> from specific commit <SHA-1>.

g

 diff

git checkout <SHA-1>
Switch to the <SHA-1> or replace with a <branch>.

git merge <branch>
Merge <branch> into current branch.

git branch <branch>
Create branch named <branch> based on the HEAD.

git checkout -b <branch>
Create branch <branch> based on <SHA-1> and switch
to
it.

git branch -d
Delete branch <branch>.

g

git fetch <remote>
Recover remote changes to remote branches
<remote>.

git pull <remote>
Recover remote changes to remote branches
from
<remote> and merge to local versions.

git push <remote> <branch>
Send local changes up to remote server
<remote> <branch>.

git status
Shows any changes in the working directory and/or
index.

git diff
Shows changes to unstaged files.

git diff --cached
Shows changes to staged files.

git diff <SHA-1>
Shows changes since <SHA-1>, this can also be HEAD
or <branch>.
git diff <SHA-1><SHA-1>
Compare two commits.

updaTes

Brought to you by:

clearvision-cm.com/git

https://clearvision-cm.com/git

SPEAK
TO
A
GIT
EXPERT
TODAY

Get in touch
today!

See how Clearvision's training, migration, and

support services can help you!

https://www.clearvision-cm.com/git/

