
Advanced

https://www.clearvision-cm.com/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201
https://www.clearvision-cm.com/git/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201

Introduction

The Git command line

How to undo a Git commit

Git commit messages

What to do when you
commit to the wrong Git
branch

Git tracking branches

II

II

II

II

Ill

II

Welcome to Cit 201!

Written by Visionaries that use Git every day.

YjJt 2 01 COJJ.eJia

> Git commits.

> Commit
messages.

> The Git command line.

> What to do when something goes
wrong!

•

For a guide to the basics, check out our Cit 101 white paper.

.

PAGEl

https://www.clearvision-cm.com/free-content-and-resources/git-101-the-ultimate-guide/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201

Cit is first and foremost a command line tool.

Graphical interfaces still have some catching up to do to match
the functionality and power that a knowledgeable user can
achieve on the command line.

That being said, the command line isn't always the most
welcoming of Uls! Let's explore what the command line can open
up for you.

Command line tips

� tuiiJwut �
Being able to visualise some of the constructs within Git can help
a lot, and some Git commands include an element of basic
visualisation without any graphics.

Try, for example:

git show-branch

PAGE2

You may get an output similar to this:

$ git shou·-h1•anch
[hugf ix1] hugf ix1: fix to e1•ro1• 23

[develop] Me1•ge h1•anch 'f eatdev_02' into develop
[featdev_02] featdev_02: connit 1

[nasterl Second part of 6001 fix

[hugf ix1] hugf ix1: fix to e1•1•O1• 23
[develop] Me1•ge h1•anch 'featdev_02' into develop
[featdev_02] featdev_02: connit 1
[de v e 1 op"] de v e 1 op : n in o r f ix f o 1· issue 3 4

What does this tell us?

The output above the ---- tells us that we have 4 local branches
and that the current branch is called develop (it has a * rather
than a !). Below the ---- are recent commit messages.

To see which of these commits are in a given local branch, you
look in the relevant column (below the * or !). In the illustration
above for example, the commit [featdev_02] featdev_02: commit
1 is present in both the develop and the featdev_02 branches.

Another good example of command-line 'graphics' is when you
use the --graph option on a Git log to show the branches
reachable from your current branch:

cassius@localhost :-/parmour-proj ect (devel,op) $git log --one line - -graph --decorate -10

I
I

11

e7 ldad (origin/develop I Merge branch 'dev_feat_l' into develop

. . ; .

• •

origin/dev_feat_1
dev feat l commit l
develop change
redchange_a commit l

f at l dev_feat_l commit 2

26284 6 Gerrit column data
28ee9ae test4444 commit

e led Change the wood turtle file - 3
de8Llca Merge usubbra�222 work• into develop

d7f3el� subbran222 work

PAGE3

™� /jJJUlu CIJln/l7illliia

If you create a new script and name it git-<script name> and make

sure it is located somewhere in your PATH, it will run like a Git

command.

Let's use the example git-newscript.

You can then type:

git newscript

This can be a seamless way of extending and customising Git with
scripts tailored to a specific system configuration and workflow.

Along the same lines, you can create aliases for commonly used
commands. Reduce the wear on your keyboard! For example:

git config --global alias.clog 'log --oneline --graph --decorate -101

Would mean you could simply type:

git clog

Note, since aliases are added to the Git config, they can be applied at any
one of three levels of scope: --system (for any one using that installation of
Git), --global (for any repository owned by a given user), and --local: for the
current Git repository alone.

PAGE4

> Partially type your Git command.

> Press tab.

> If there is more than one Git
command possible, each
possibility will be shown.

> If what you've typed is
unambiguous, you'll get the full
command.

"I have no doubt that the ways we

can use Git via a graphical

interface will improve even further

in the near future, and lead to real

benefits in user experience.

But for tackling those truly

interesting and challenging Git

problems, I will always want to see

that cursor flashing in front of me!"

Philip Armour

Clearvision Technical Consultant

This even works for command options! For example:

git log --gra<tab>

Will expand to:

git log -graph

Autocompletion is configured for Git Bash (git-for-windows). For Linux,

you need to check that you have a file called git-completion.bash in

/etc/bash_completion.d/, and run the source command on that file in

the session you're using for Git.

PAGES

<(jJt COU))JJlA aJ?Jt plWITI/Jt

Have you been using the Cit command line in Monochrome?

Why not try a more colourful experience?

The config command to use is:

git config --global color.ui true

This StackExchange post has some more info on configuring the colours to
your exact requirements.

Finally, it can be useful to have Git status information forming part of your Bash
prompt. The Bash prompt can be set up to show which branch you are currently
working on, saving you time checking.

Again, this is configured for you already in Git Bash. For Linux you can activate
it by executing:

source /etc/bash_ completion.d/git-prompt.sh

PSl=1\u@\h:\w$(__ git_psl" (%s)") \$

More details about what can be done with prompt information and how,
are available in the comments of the git-prompt.sh file.

http://unix.stackexchange.com/questions/44266/how-to-colorize-output-of-git

What do you do when you commit something that you
never intended to commit?

Well, you undo it:

git reset HEAD-1

What this means is that you reset the HEAD of the current branch
by one commit back in history. You can even undo multiple
commits in one go, all you have to do is increase the number at
the end.

All the changes that the reverted commit contained are now local
changes in your workspace. You can either commit these again,
e.g. to another branch or to include additional changes, or you
can throw them away with git reset --hard.

If you pushed your commits before you started undoing them,
there are a couple of things that you need to bear in mind:

> You need to push your undone commits with the --force
option. Please note, this will also undo any commits on the
target branch made by other users, so take care when
pushing with --force and make sure there are no other
commits on the branch that follow yours.

> Also, if you pull (rather than push) at this point, then your
undone commits will be undone, i.e. you will end up where
you started.

A Good Commit Message

Good commit messages are arguably just as important as writing
meaningful comments within your source code.

Why?

Within Git, updates to code normally span multiple source files, meaning
commit messages have a more 'aerial view' perspective than the
'ground-level' comments in source code.

> They tell the story of how the software has evolved.

> They can help greatly when your boss asks if bugfix ABC went into
customer branch DEF, for example, by using git log --
grep="ABC".

> They represent a form of passive 'to whom it may concern'
collaboration, which results in hard-to-quantify, but tangible and
definite long-term benefits.

Get the most from Git commit messages...

PAGES

When learning Git, we often begin by messing around with our personal
'sandbox' repositories from the command line. During this time, it's
understandable when we create quick commits like:

�-
g

-
i

_

t

_
c
_
o

_
m

_
m
_

it

_
-m

_
'
_
'c
_
h
_
a
_
n
_

g

_
e
_

t

_
o
_
so

_
m
_

e
_
c
_
o
_
d
_
e
_
" _____ X----

But don't get into this habit when modifying real production code!

It is better to simply use git commit and let Git invoke our default
editor for us.

When we do this, Git brings up a default message with some
advisory comments, which can be tailored to specific
requirements using the commit template variable in our Git
config.

PAGE9

&3& C1JJ7£fo1 UJ!wt � CJJITIJTlit ...
It's far from trivial to rectify a situation where historical Git commit
messages have undesired or sensitive content. It requires careful
use of tools like git filter-branch to completely rebuild the DAG.

Given the potential difficulty of changing old commit messages,
what happens if your commit and message turn out to be
incorrect?

The Cit "sticky note"

Luckily, there is a lightweight solution. In cases where you
need to associate some extra information with an old commit
message, you can turn to git notes.

You can use this feature to add further information to a
historical commit by typing:

git notes add <commit ID>

Opens the default editor. To add to this later, use:

git notes append <commit ID>

The key takeaway? Think of future Developers when you
write your commit messages!

PAGE 10

It's a sunny day, you're having a great time coding, and being the
good boy/girl that you are, you commit regularly.

And then it hits you - several commits, all to the wrong branch. What
now?

Well, this is Git we are talking about. So the good news is that it's
relatively straightforward!

Let's say you committed to master, and you meant to commit to a
new branch called myfeature. There are two things that need fixing.
First of all, you need to revert master back to where it originally was.
And secondly, you need to get your changes on that new branch.

The options:

> Undo commits on master, checkout new branch myfeature,
and commit all your changes as one commit.

> Modify refs manually for master to point back to where you
were, and for your new branch ref to.

The first solution is simple and easy to apply. There's a relatively
small margin for error. The downside is that you don't get your
original commit messages on the new branch, and all changes are
applied as a single commit with a new commit message, etc.

The second solution is a little more involved, but it means all
commits are passed over to the new branch (though it is slightly
easier to get wrong).

PAGE 11

1lmiiP aJ71t cornJ7lit m � /JJumdi

Make sure you are on the branch to which you have been committing.
Use git log to check how many commits you want to roll back. Then,
undo the commits with git reset HEAD-N where "N" is the number of
commits you want to undo.

For example, to undo one commit:

git reset HEAD-1

Then, create a new branch and check it out in one go and add and

commit your changes again.

git checkout -b newbranch

git add -A

git commit -m 11Committed on new branch11

Be careful with the add -A! You may be adding
unrelated, uncommitted files and directories. Have a
look with git status before you commit.

PAGE 12

'117 au8 COl7lJ7lit!J m t/28 ofheJu bNJndi

Follow these steps carefully (there is slightly more margin for
error with this method).

The first step is to make a note of the commit id you want to
make the head of the new branch.

git log

Copy the commit id somewhere safe. Then, reset your current
branch back by one commit (or however many commits you
need to go back):

git reset --hard HEAD-1

And the final step: move the commits that follow to the new branch:

git checkout -b newbranch

git reset --hard< commit_id >

And it's done! Time to push both branches (with --force if
needed, i.e. if you had previously pushed the changes).
However, as always, when using --force make sure there are
no other commits that follow yours as they would be undone.

PAGE 73

The way we talk about a tracking branch within Git can become confusing,
because there are two different concepts.

Context 1: The remote tracking branch

Firstly, a 'remote tracking branch' is not really remote - which doesn't
really help!

It exists in your local Git repo under .git/refs/remotes, for example:

.git/refs/remotes/origin/fix22

It is also not the kind of branch we usually deal with in Git - since we
cannot work on it. But it is a branch in the Git sense: a thing which points
to a commit.

So just imagine there is a branch called fix22 for the repo on the remote
machine (our origin), and we have not created or ever edited this branch
locally.

When we communicate with the remote machine, e.g. via git fetch origin,
a local file called .git/refs/remotes/origin/fix22 will be updated or created.
The file contains the latest commit of this branch on the remote repo.

So a remote tracking branch records the state of a branch in a remote
repo, but it cannot be worked on.

PAGE 14

Context 2: The local tracking branch

Unlike the remote tracking branch, we can work on this branch!

It is a local branch which appears when you look at the files under
.git/refs/heads.

Again, imagine there is a branch called fix22 on the remote repo
(our origin). If we want to work on this branch we can create a
local tracking branch as follows:

git checkout --track -b fix22 origin/fix22

Or in recent versions of Git, you can simply type:

git checkout fix22

When we communicate with the remote machine, e.g. via git fetch
origin, Git will know that this local tracking branch is associated
with the branch on the remote machine, and will do the right thing
when we push and pull changes.

To see what local tracking branches are configured in a repo and
how they map to branches on the remote machine, you can
execute:

git checkout fix22

PAGE 15

With a better understanding of tracking branches, we can now look
at the similarities and differences between git pull and git fetch.

d� bdmee/1 'g)tpulloN{!Jlu' aJ7Jt '[lit
�oN[jd

Both the git pull origin and git fetch origin commands update the remote
tracking branches.

This means that the files under .git/refs/remotes/origin in your local repo
get updated. If new branches have appeared on the remote
machine, then new files appear.

Both commands will bring the latest commits from the remote
machine, which you do not already have in your repo. In this
context, the behaviour of fetch and pull is identical for branches
that are not currently the active branch (checked out).

!J)� bdmee/1 '[lit pull oNgJa' aJ7ft '[lit
�oN{!Jlu'

For git pull origin to work, a local tracking branch must be active
(checked out).

git pull origin will, in addition to the git fetch operations, do an
automatic merge or fast-forward of the active (local tracking) branch.

So essentially, git pull does everything that git fetch does - plus a
little more on your active branch.

PAGE 16

You•ve reached the end of Cit 201 - but the learning
doesn't have to stop here!

Clearvision's Git training is available for
teams of all sizes, of all abilities. From
our Basics and Advanced Courses to
SmartGit and Gerrit Courses,
Clearvision's training is hands on and
interactive.

Take your teams on a journey, with a
pre-training skills gap analysis and
post-training refresher material!

Q clearvision-cm.com

enquiries@clearvision-cm.com

't# @clearvisioncm

in /company/clearvision

https://www.clearvision-cm.com/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201
https://www.clearvision-cm.com/git/training/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201
https://www.clearvision-cm.com/?utm_source=pdf&utm_medium=white_paper&utm_campaign=git_201
mailto:enquiries%40clearvision-cm.com?subject=Git%20201%20Guide
https://twitter.com/clearvisioncm
https://www.linkedin.com/company/clearvision

